
DIFFRACTION CF AN ELASTIC WAVE IN A DISC 
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A numerical solution is constructed for the axisymmetric problem of the diffraction of a 
plane longitudinal wave in a rigid disc (cylinder) of finite thickness~ The disc is enclosed in 

an unbounded elastic medium; at the contact surface, the tangential stresses are limited by 

some constant. The incident wave moves along the axis of the cylinder and has the form of 

a semiinfinite washed-out step. At the same time, a solution is obtained to the correspond- 

ing static problem. A study was made of the dependence of the rate of motion of the cylinder 

and the stress field on the parameters of the problem. In particular, it is shown that the 

contact conditions have a considerable effect on the stress field only near the lateral surface~ 

The results obtained can be useful for evaluating the errors in measurement of the stresses 

and velocities in an elastic medium, and possibly also in certain other cases. 

1. Within the f ramework of the dynamic theory of elast ici ty,  this paper considers  the ax i symmetr ic  
problem of the interact ion between a longitudinal wave and a rigid cylinder of finite dimensions.  The cyl- 
indrical  coordinates z and r are  used; the z axis coincides with the axis of the cylinder,  which occupies the 
region - H / 2  <_ z <_ H / 2 ,  r ~ 1 (Fig~ 1). The region outside of the cylinder is filled by an elast ic  medium. 
The measuremen t  units were chosen so that the radius of the cylinder,  the density of the medium, and the 
rate of propagation of longitudinal waves in the medium were equal to unity. 

In what follows, the following basic designations will be used: p is the density of the cylinder; # is 
the shear  modulus of the medium; t is the time; u(t, r ,  z) and w(t, r ,  z) are displacements  along r and z; 
v(t) is the velocity; w0(t) is the displacement  of the cylinder;  ~zz,  r = (~rz are the components of the s t ress  
tensor ,  connected with the displacements  by Hooke's  law 

z,z  = wz+(t--2~t) ( u ~ + u / r ) ,  "~ =bt (uz+ w~)(l.'l) (1.1) 

In addition, the following auxil iary designations are introduced: F is the contour of the cylinder in 
the coordinates r ,  z; Q~ and Q2 are  the displacements of the cylinder along the normal and the tangent to F; 
Q1 = 0, Q2 = w0 at the la te ra l  surface;  Q1 = w0, Q2 = 0 at the bases;  ql and q2 are  the displacements  in the medium at 
the boundary with the cylinder,  qi along a normal  to F, q2 along the tangent; a dot denotes a part ial  der iva-  
tive with r e spec t  to t. 

Outside of the cyl inder ,  the dynamic equations of the theory of elast ici ty are  satisfied for u and w 

Utt = ~tUzz -~ Urr ~- ( i  - -  ~t) bYrz ~- U 2 / r - -  U / r 2 (1.2) 
wit = w._ + ,~w~ + ~w~ / r  + ( i  - -  ~) (u~  + u~ / r) 

~ne equation of motion of the cyl inder  is 

H d2wo f r ~ z  dr  + �9 dz  (1.3) 
0 2 dt 2 . 

r 

Equations (1.2) and (1.3) r ep resen t  a boundary-value problem with initial conditions at  t = 0 and bound- 
a ry  conditions at  F. 
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Fig. 1 

The initial conditions describe a plane longitudinal wave, falling from 
infinity on the upper base of the cylinder.  Ahead of the leading front of the 
wave, the medium is quiescent and not loaded; behind the front, there is a 
monoaxial deformation with (rzz = 1. These conditions have the form 

w o(0)--- 0, v(0) ---- 0, u(0, r,z) = u,(0, r,z) = 0 
W z  (0, r, z) = wt (0, r, z) = ./((H q- T -- 2z) / T) 

Here 

(1.4) 

f(~) ~-0 at ~ > t , f ( ~ ) = l  at ~ - - | , f ( ~ ) - - - - ( t - ] - ~ 2 s i g n ~ ) / 2 - - ~  
at --  i < ~ < i  (1.5) 

The pa ramete r  T, entering into (1.4), charac te r i zes  the degree of wash- 
ing-out of the wave. 

At the surface of the cylinder,  there are  two boundary conditions. The 
f i rs t  condition ar i ses  f rom the assumption that the cylinder is rigid. It has 
the form ql = Qt at F. 

The second condition corresponds  to a simplified law of dry frict ion 

= k sign (q2-- 0~), if I TI = k (1.6) 

These conditions differ f rom Coulomb's law in that the quantity k introduced into (1.6) charac ter iz ing  
the adhesion of the medium to the surface,  does not depend on the normal s t r e s s .  

It must  be noted that, if k = 0, f rom (1.6), it follows that v = 0, which corresponds  to slippage condi- 
tions. At sufficiently large values of k, q2 -- (~2, which corresponds to adhesion conditions. In these i m p o ~  
rant partial  cases ,  the problem becomes l inear .  

The problem formulated a r i ses  naturally with the study of the effect of shock loading on a body con- 
taining a rigid cylindrical  inclusion. It is c lear  that, depending on the situation, different data with respec t  
to the phenomenon may be necessary;  it is therefore ,  expedient to fix the physical interpretat ion of the 
problem. 

In what follows, it will be assumed that the cylinder is a s t r e ss  pickup, enclosed in an unbounded 
elast ic medium. The sensing element occupies a cer ta in  part  of the upper base of the cyl inder  and does 
not affect  the s t ress  field. It is assumed that the measured  s t r ess  lies between the maximal and minimal 
normal  s t r e s ses  acting on the sensing element.  The object of the measurement  is ,  obviously to obtain in- 
formation on the s t r e ss  in the wave; the main in teres t  lies in the difference between the measured s t r ess  
and the s t r e ss  in the incident wave. Therefore ,  in what follows, the principal emphasis  will be on a study 
of the effect of the pa ramete r s  of the process  on the distribution of the normal s t r e s se s  at  the upper base 
of the cylinder.  

2. The formulated problem was solved numerical ly .  The equations of motion and the boundary con- 
ditions were replaced by finite-difference relat ionships,  and the sys tem of equations obtained was solved 
on a B]~SM-3SM digital computer .  It is c lear  that, under these c i rcumstances ,  a solution may be obtained 
only in a finite region. A perturbation, brought about by the motion of the cylinder,  for finite values of t, 
is propagated to a finite region, outside of which the solution has the form 

u-----0, w - - - - ] ( t - - z ~ - H / 2 )  (2.1) 

It appears  natural to calculate the solution in this region; however,  the technical charac te r i s t i c s  of 
the machine did not permit  using this method. Therefore ,  additional boundary conditions were introduced 
with z = • z0 and 0 _< r -< R, r = R and--z0 -< z _< z0, simulating conditions at infinity. It was assumed that, 
at the boundary introduced, the perturbed motion is close to one-dimensional .  The boundary introduced is 
designated FI (Fig. 1). For  the normal  and tangential displacements of the perturbed motion toward the 
new boundary, the previous designations ql and q2 are  used; the normal to the boundary is denoted by l. If 
we define Ct = 1, C 2 = ~ then, at F1, the one-dimensional  equations of the theory of elast ici ty will be 
satisfied 

q:,tt = C~q~,zl ,  a = i,2 (2.2) 
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In (2.2), t h e r e  i s  no s u m m a t i o n  with  r e s p e c t  to a;  the s u b s c r i p t  l d e no t e s  the d e r i v a t i v e  a long the 
n o r m a l  to FI  and  qt = w - f ( t - - z  + H/2 ) ,  q2 = u a t  the u p p e r  and  l o w e r  s e c t i o n s ;  ql = u, q2 = w - - f ( t - z  + H/2)  
a t  the l a t e r a l  s e c t i o n .  

The g e n e r a l  s o l u t i o n  of any  of  Eqs .  (2.2) c o n s i s t s  of  the s u m  of  two a r b i t r a r y  func t ions ,  one of which  
d e s c r i b e s  a wave  going  a w a y  t o w a r d  in f in i ty ,  and the o t h e r  a wave  c o m i n g  f r o m  in f in i ty .  Since  the p e r -  
t u r b e d  m o t i o n  c o n t a i n s  on ly  w a v e s  of  the f i r s t  t ype ,  the b o u n d a r y  cond i t ions  m u s t  i n t e r s e c t  w a v e s  of the 
s e c o n d  type .  Such b o u n d a r y  cond i t i ons  a r e  the fo l lowing a n a l o g  of the  S o m m e r f e l d  p r i n c i p l e  of r a d i a t i o n :  

q,~t + G,q:,z = 0 at s (:~ = 1, 2) (2.3) 

At  p = 0, Eq.  (1.3) d e g e n e r a t e s ;  t h e r e f o r e ,  us ing  (1.1) and (1.2), we t r a n s f o r m  i t  to the f o r m  

p ~  ~ wurdrdz = rwzdr +~rw, .dz  @-(l @p) ( i  + h/2)(u~--ub)  
D, rl 

(2.4) 

H e r e ,  h is  a cons tan t ;  F 2 is  a con tou r ,  made  up of  the s t r a i g h t  l i ne s  

- - ( H + h ) / 2 ~ z ~ ( H + h ) / 2 ,  r - - - - i + h / 2 ,  

z = q - ( H + h ) / 2 ,  O ~ r ~ i + h / 2  

where DI is the region included between F and F2; u a and u b are the values of u at the upper and lower 

corners of F2o 

In a cylindrical system of coordinates, there arise conditions at r = 0 which, from considerations of 

symmetry, are taken in the form 

u = O ,  w r = O  

The i n i t i a l  cond i t i ons  w e r e  s e t  not  a t  t = 0, but  a t  t = H / 2 - - z  0 < 0. This  c o m e s  down to a s i t u a t i o n  in 
which  the sough t  func t ions  and t h e i r  d e r i v a t i v e s  a r e  equa l  to z e r o  a t  t = H / 2 - z  0 and  z s z 0. 

Thus ,  the s y s t e m  of  equa t i ons  (1.2) i s  s o l v e d  with  the b o u n d a r y  cond i t ions  (1.6), (2.3), (2.4) and  null  
i n i t i a l  c o n d i t i o n s .  

As i s  u s u a l ,  the r e g i o n  i n c l u d e d  b e t w e e n  F and F1 i s  d iv ide d  by  s t r a i g h t  l i ne s  p a r a l l e l  to the c o o r d i -  
nate a x e s  in to  s q u a r e s  wi th  the  s ide  h. Al l  the func t ions  a r e  c a l c u l a t e d  only  a t  the nodes  of  the g r i d  o b -  
t a i ned ,  and  fo r  d i s c r e t e  v a l u e s  of  the t i m e .  I t  i s  a s s u m e d  tha t  F and F2 p a s s  t h rough  nodes of the  g r i d .  
This  m e a n s  tha t  l / h ,  H / h ,  z 0 / h ,  and  R / h  a r e  a l l  whole  n u m b e r s .  

The s o l u t i o n  i s  c a l c u l a t e d  fo r  s u c c e s s i v e  v a l u e s  of t ,  wi th  the s p a c i n g  t 0, s t a r t i n g  f r o m  t = H / 2 - - z  0 +to. 
i 

In wha t  f o l l o w s ,  the a r g u m e n t s  of  the  func t ions  a r e  not  c a l c u l a t e d ;  the s o l u t i o n  fo r  the m o m e n t  of t ime  
t is  c a l l e d  the  m i d d l e  so lu t i on ,  fo r  t - t o ,  i t  i s  c a l l e d  the l o w e r  so lu t ion ,  and fo r  t +  to, i t  i s  c a l l e d  the s o l u -  
t ion  for  the u p p e r  l a y e r .  To ob t a in  an a p p r o x i m a t i o n  of  the d e r i v a t i v e s  a t  the e x t e r n a l  po in ts  of  the  r e g i o n  
in the m i d d l e  l a y e r ,  the  c e n t r a l  d i f f e r e n c e  o p e r a t o r s  6 z,  6zz ,  and 5 z r  a r e  i n t r o d u c e d  us ing  the f o r m u l a s  

8z hJ = (]i.i+1 - -  ]~,S-1) / 2h 8~z]ij = (/jj+t - -  2]i, .~ + / i .~- :  / h~ 5zr/ij = (h+:, J+: + ]i-1, j-1 - -  k, ~+: - -  A-l. ~ / 4h ~ (2.5) 

H e r e ,  f ( r ,  z) is  an a r b i t r a r y  funct ion  of  r and z .  A n a l o g o u s l y ,  the o p e r a t o r s  6 r ,  5 r r ,  6 l ,  5ll, 5 t,  and 
5t t  a r e  i n t r o d u c e d ,  e x c e p t  t ha t  in the e x p r e s s i o n s  for  the two l a s t  o p e r a t o r s ,  t o i s  u sed  i n s t e a d  of h .  Thus ,  
for  the c o r r e s p o n d i n g  d e r i v a t i v e s ,  the o p e r a t o r s  i n t r o d u c e d  y i e l d  an  a p p r o x i m a t i o n  of the s e c o n d  o r d e r .  

Since  E q s .  (1.2) a r e  d e t e r m i n e d  only  a t  e x t e r n a l  po in ts  of  the r e g i o n ,  fo r  t h e m  we can  i m m e d i a t e l y  
w r i t e  the d i f f e r e n c e  a n a l o g i e s  

6.u = ~G~u + 6 . u  + (i - -  ~)  6 ~ w  § G u  / (hi)  - -  u / (hi)  ~ 

5ttW = 5zz w -~ ~SrrW @- ~)rW / (hi) @. (l - -  ~) 5rzu -}- (i ,-- ,~) 5zu / (hi) 

(2.6) 

The expressions obtained describe a three-layer explicit scheme of the second order of accuracy for 

the system of equations (1.2). For the scheme to be stable, the Courant criterion must be satisfied [1]; 
therefore, in what follows, it is assumed that t o = h/2. 

The initial conditions for the system of equations (2.6) reduce to the fact that all the functions are 

equal to zero at t = H/2--z0--to and t = H/2-z 0. 
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The boundary conditions are of a more complex character. 

For the conditions at the external boundary, we can use the cen- 
tral difference relationships introduced into (2.5). The differ- 
ence analogy of conditions (2.3) has the form (no summation with 
respect a; l is the normal to FI) 

6tq~ @ C~6~q~ -= 0 ~a F i (~ = t, 2) (2.7) 

Since cen t r a l  d i f fe rence  r e l a t ionsh ips  a r e  used in (2.7), a 
point lying outside the r eg ion  e n t e r s  into (2.7). To exclude this 
point,  we make use of  the fact  that ,  a t  the bounda ry ,  q a  a l so  
sa t i s f i e s  Eqs.  (2.2). The d i f fe rence  app rox ima t ion  of  these  equa-  
t ions 6 t tqa  = Ca26/ /qa  contains  the s a m e  point,  lying outs ide of 
the r eg ion  under  cons ide ra t ion ,  as  in (2.7). This p e r m i t s  ex-  
cluding this point and obtaining an approximation of the boundary 
conditions in the form (qa is taken in the middle layer) 

2C. (Stq~ + C.5~q~.) / h + 5ttq. - -  C~25tlfl. = 0 (2 .s) 

Boundary  condit ion (2.4) was a l so  app rox ima ted  by c e n t r a l  
d i f fe rence  r e l a t ionsh ips .  The in tegra l  en te r ing  into the left-hand 
p a r t  is of the o r d e r  h and can be t r a n s f o r m e d  to the f o r m  

g 3 t 

I i w L t r d r d z  h d~'wo h I 
. 2 dr"- }- ~ -  wtt dz -~ 0 (h ~) (2.9) 

Fig.  3 D, r, 

Here ,  F 3 is  the s e gm e n t  r = 1,  - H / 2  < z < H/2 .  

The i n t eg ra l s  with r e s p e c t  to F 2 and F 3 were  ca lcu la ted  using the t r a p e z o i d  ru le ,  while the funct ions 
u n d e r  the in teg ra l  s igns  w e r e  taken a t  the points of i n t e r s ec t i on  be tween F2 and F 3, and the s t r a i g h t  l ines 
of  the gr id .  The symbol  Z is used for  the c o r r e s p o n d i n g  in tegra l  s u m s .  Since F 2 does.,not pass  through 
nodes of  the g r id ,  for  an  app rox ima t ion  of the f i r s t  de r iva t i ve s ,  the o p e r a t o r s  5~2 and 6~2, analogous  to 
those in t roduced  into (2.5) were  used,  but  with a spac ing  of  h / 2 .  

The d i f ference  analog of  (2.4) has  the f o r m  

(H2 -§ h) 6ttw ~ = ~ r (SVz,W + 1~6~/*w) + -Th ~_j Suw q-( l  - -  [l) ( l -~ + )  u (t, l + h, h -4- H / 2) -- u ( t; t + h, --  h -- H / -~- 0 ( h ~) 

r, r~ (2.1 0) 

H e r e ,  6ttw was  ca lcu la ted  in the l o w e r  l a y e r .  In the de r iva t ion  of  (2.10) use was  made of  the fac t  
tha t  Ua and u b and the left-hand pa r t  of (2.9), have an  o r d e r  of magni tude  h; thus ,  fo r  them,  an a p p r o x i m a -  
t ion  of  the f i r s t  o r d e r  is su i tab le .  

For  the r e m a i n i n g  boundary  condi t ions ,  the re  a r e  r e q u i r e d  un i la te ra l  o p e r a t o r s  of the second o r d e r ,  
d e t e r m i n e d  in the second  l a y e r  

5z' ] = (4/(z + h) --  ] (z -{- 2h) -- 3] (z) / 2h (2.11) 

the analogous  o p e r a t o r s  5rl, 6l 1, and 6~; only in the l a s t  o p e r a t o r  is to used ins tead  of  h. and 

At r = 0, the condi t ion has the f o r m  

u = 0 , 5 ~ i w = 0  

The condi t ion at  the boundary  of the cy l inde r  ql = Q1 r e m a i n s  unchanged,  while condi t ion (1.6) a s s u m e s  
the f o r m  (l is the n o r m a l  to F; k 1 = k/g)  

6} (q~ - -  Q~) = O, if I@q21 ~ k~ (2.12) 
611q~ : k 1 sign 6~ ~ (q~ -- Q~), if I (~ziq~ I = kl 

The condit ions obtained cons t i tu te  a s y s t e m  of nonl inear  equat ions  for  de t e rmin ing  q2 at F.  Each  of  
the equat ions  contains  only one unknown; t h e r e f o r e ,  this s y s t e m  is ea s i ly  solved.  The solut ion is unique 
and has the f o r m  
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q2 = - - g z ,  if ]gz47Y~ l<k2 
q ~ - - g e - - k  2sign(~/z 47Y2), if ' igl 47 g2 ] > k 2  

(2.13) 

Here 

k 2 = 2hk 1 / ~ t ,  gz-----2hSt z ( q 2 - Q 2 ) / 3 - q ~ ,  g2 = 2hSzZq~ /347q~  

Yl and Y2 do not contain q2 at F. 

Thus, the solution in the upper layer is completely determined. 

Moving from layer to layer, we can construct a solution for any given 

values of t. 

3. The above scheme was put into practice in the form of a pro ~ 

gram with only slight changes. The calculation was carried out until 
steady-state conditions had been attained and took from 20 to 60 rain; 

H was varied from 0.5 to 2.0, p from 0.i to 0.5, k from 0 to 1.0, p from 

0.5 to 4.0, T from 0.5 to i~ z 0 from 2.5 to 5.0, R from 3.0 to 6.0, h 

from 0.i to 0.2. Thus, only the case of large values of H remained 

uninvestigated. This gap is explained by the fact that, with a fixed 

spacing with respect to h and r, for large values of If, too many points 

of the grid are required~ 

As a result of the calculations it became clear that the most sta- 

ble characteristic of the process is the velocity of the cylinder v(t), 

which is practically independent of ~ and k, and depends only weakly 

on p and H. The solid line on Fig. 2 shows the dependence of v on t 
forp =0.l,k= 0, H=2o0, p =i.0, T=0.25, h =0.2,z 0 =2.5, R=8.0. 

The dotted l ine  c o r r e s p o n d s  to # = 0.5, k = 1.0,  the d a s h - d o t  l ine to # = 0.5, k = 0, while  the r e m a i n i n g  
p a r a m e t e r s  a r e  the s a m e .  Ca lcu la t ions  were  c a r r i e d  out for  i n t e r m e d i a t e  c a se s  (p = 0.2, 0.3, 0.4, and 
k = 0); the d i f fe rence  ob ta ined  was s t i l l  l e s s .  Analogous r e s u l t s  we re  a lso  ob ta ined  for  H = 0.5, 0.8, 1.0,  
and 1.6.  Since in  the theory  of e l a s t i c i t y  # _< 0.5 [2], and a t  k = 1.0,  no s l ippage was o b s e r v e d ,  i t  may be 
a s s u m e d  that  for  H _< 2.0 and p = 1.0,  the velocity" of mot ion  of the c y l i n d e r  is  p r a c t i c a l l y  independen t  of p 

and k. 

F i g u r e s  3 and 4 show the dependence  of v(t) o n H  and pc On Fig.  3, c u r v e s  1 and 2 c o r r e s p o n d  to H = 
0 . 5 , 1 . 0  a n d p  = 0 . 3 ,  p = l . 0 ,  k = 0 ,  T = 0 . 5 ;  on Fig.  4, c u r v e s  1, 2, 3, 4 c o r r e s p o n d  to p = 0 . 5 , 1 . 0 ,  2.0, 4.0 

and H = 1.0,  # = 0.3, k = 0, T = 0.5. 

It c an  be s e e n  that  the dependence  of the ve loc i ty  on  H and p is b rough t  out  c l e a r l y  and that  i t  c o r r e -  

sponds  to i n tu i t i ve  concep t s .  

The dependence  of the s t r e s s  f ie ld  on the p a r a m e t e r s  of the p r o b l e m  c ome s  out  even  m o r e  c l e a r l y .  
The e s s e n t i a l  point  in  the p r o b l e m  is  the va lue  of Crzz at  the su r f a c e  of the c y l i n d e r .  F igu re  5 i l l u s t r a t e s  
the value of Crzz (h, r ,  H/2); tl i s  chosen  so that  s t e a d y - s t a t e  condi t ions  have se t  in .  Curve  1 on this  f igure  
shows ~zz as  a func t ion  of r for  H = 0.5; cu rve  2 for  H = 1~ c u r ve  3 for  H = 2.0; the o the r  p a r a m e t e r s  a re  

1.t=0.3,  p = i . 0 ,  k = 0  

On Fig .  6, cu rve  1 shows ~zz for  # = 0.1; cu rve  2 for  # = 0.5; the o the r  p a r a m e t e r s  a re  

H =  2.0, p---- t .0, k = 0  

As an  i m p o r t a n t  spec i a l  c i r c u m s t a n c e ,  i t  m u s t  be noted that  C~zz a t  the base  of the c y l i n d e r  is  p r a c -  
t i c a l l y  i ndependen t  of k, whi le ,  a t  the s a m e  t i me ,  ~zz depends  s t r o n g l y  on k a t  the l a t e r a l  s u r f a c e .  The 
dependence  of ~zz  a t  the c e n t e r  of the upper  ba se  of the c y l i n d e r  on k for  p = 0.1, 0.2, 0.3, 0.4, 0.5 and 
H = 2.0, t = ~o, is shown on Table  t .  

F igu re  7 shows the dependence  of ~rzz on z a t  the l a t e r a l  su r f a c e  of the c y l i n d e r  for  k = 0.1, 0.3 and 
H = 2.0,  p = 0.3. 

The dependence  of ~rzz at  the c e n t e r  of the uppe r  ba se  of the c y l i n d e r  on # and H for  k = 0.0, p = 1.0,  
t = % is shown on Table  2. 
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'TABLE 1 

0,t0 0.20 0,30 
L 

0.0 
i.O 1,t4 i.25 i.34 

OAO I 0.50 

i 

t . 4 4  { t.5t 
t.42 [ t .48 

T A B L E  2 

H 

0 . 5 0  

0.5 
0.8 
1.0 
t.6 
2.0 

I 
0.10 0.20 0,30 j { OAO 

I 

t.03 t.08 'l,i0 t.12 
t.03 i.09 1,13 t.16 
1.05 i.09 1,15 t.2t 
i.iO i.20 t.29 i.35 
1.t4 1.27 1.36 i.44 

l .t4 
i .22 
i .25 
t .4i 
i .5i  

% 

E Q.B 2 

F ig .  7 F ig .  8 

i5~_ L_ 
l 
I 

z~ 

F i g u r e  8 g i v e s  the d e p e n d e n c e  azz ( t )  a t  the c e n t e r  of the u p p e r  b a s e  of  the c y l i n d e r  fo r  # = 0.1, 0.5 
and H = 2.0,  p = 1 .0 ,  T = 0.25.  

F i g u r e s  9-12 g ive  the  d i s t r i b u t i o n s  of the s t r e s s  O-zz(r, z,  t) for  m o m e n t s  of  t i m e  t = 1.0,  1.5,  2.0,  
5.0 and the fo l lowing  c o m b i n a t i o n  of  p a r a m e t e r s  

= 0.3, k = t .0,  p = 1.0, 
H = l . 0 ,  T = 0 . 5  

T h e s e  f i g u r e s  w e r e  o b t a i n e d  with  the  a i d  of a s p e c i a l  p r o g r a m  in which  the r e a d - o u t  of  an  A T s P U -  
128 c o m p u t e r  was  u sed .  The c o o r d i n a t e  z i s  p lo t t ed  a long  the ax i s  of  o r d i n a t e s ,  and r a long  the ax i s  of a b -  
s c i s s a s .  The con tou r  of the c y l i n d e r  is  i n d i c a t e d  by the d a s h e d  l ine ;  the f i g u r e s  show only the r e g i o n  I z I -< 
(H/2 + z0)/2 ,  0.5 _< r _< 1 .5 ,  a l though  the whole  r e g i o n  Izl _< z 0, 0 _< r _< R was  d e v e l o p e d  in the c o m p u t e r .  
The n u m b e r s  1 , 2 , 3  . . . .  denote  zones  of low v a l u e s ,  and the l e t t e r s  high v a l u e s  of the s t r e s s e s ,  c o m p a r e d  to 
the s t r e s s e s  in the i n c i d e n t  w a v e .  The white  f i e l d s ,  with the e x c e p t i o n  of  the whi te  f i e ld  in  f ron t  of  the 
s y m b o l  9 a h e a d  of  the f ron t  of the  i n c i d e n t  wave  in F ig .  9, c o r r e s p o n d  to the s t r e s s  in the  i n c i d e n t  wave .  A 
t r a n s i t i o n  to the fo l lowing s y m b o l  c o r r e s p o n d s  to a change in  ~zz  by  0.05.  In p a r t i c u l a r ,  the a b s e n c e  of a 
footnote  deno te s  ~zz  = 1.0 • 0.025,  the  s y m b o l 1  de no t e s  a z z  = 0.95 • 0 .025,  and the s y m b o l  A deno te s  ~zz  = 
1.05 • 0.025.  In F ig .  9, the  l e a d i n g  b o u n d a r y  of the wave  f ron t  i s  l o c a t e d  a t  the l e v e l  of the l o w e r  b a s e  of 
the  c y l i n d e r .  In the c e n t r a l  p a r t  of the u p p e r  b a s e ,  the s t r e s s  is  ~zz  = 1.10 ~= 0.025,  which ,  a t  r > 0.5,  r i s e s  
wi th  a p p r o a c h  to an  a n g u l a r  point .  Below the l o w e r  b a s e ,  in the c e n t r a l  p a r t  of  the s t r e s s  i s  a z z  = 0.90 :L 
0.025. In the v i c i n i t y  of  an a n g u l a r  point ,  zones  of  s t r e s s  c o n c e n t r a t i o n  a p p e a r  c l e a r l y  (the s y m b o l  A). 
Along the l a t e r a l  s u r f a c e  of the c y l i n d e r ,  the uns t ab l e  c h a r a c t e r  of the s t r e s s  d i s t r i b u t i o n  i s  c l e a r l y  m a r k e d .  
On the whole ,  the s t r e s s e s  h e r e  v i se  f r o m  the edges  t o w a r d  the l a t e r a l  s u r f a c e ,  w h e r e  ~zz  = 0.95 =~ 0.025.  

On F ig .  10, the s t r e s s  d i s t r i b u t i o n  a long  the l a t e r a l  s u r f a c e  b e c o m e s  m o r e  s y m m e t r i c a l ;  h o w e v e r ,  
the c h a r a c t e r  of the d i s t r i b u t i o n  of the s t r e s s e s ,  i . e . ,  t h e i r  i n c r e a s e  f r o m  the edge  t o w a r d  the c e n t e r ,  i s  
r e t a i n e d .  In the v i c i n i t y  of a n g u l a r  po in t s ,  above  the u p p e r  and be low the l o w e r  b a s e s  of  the c y l i n d e r ,  t h e r e  
is  an a p p r e c i a b l e  g rowth  of the s t r e s s  c o n c e n t r a t i o n .  The s t r e s s e s  in  the c e n t r a l  p a r t  of the l o w e r  b a s e  
r i s e  (~zz  = 0 .95 •  0.025).  

In F ig .  11, Ii~e s t r e s s  d i s t r i b u t i o n  i m m e d i a t e l y  a long the l a t e r a l  s u r f a c e  is  c l o s e  to s t e a d y - s t a t e  con-  
d i t i o n s .  Above the u p p e r  and be low the l o w e r  b a s e s ,  t h e r e  i s  an  i n c r e a s e  in the zones  of s t r e s s  c o n c e n t r a -  
t io  n. 

F i g u r e  12 c o r r e s p o n d s  to ful ly  e s t a b l i s h e d  q u a s i - s t e a d y - s t a t e  c o n d i t i o n s .  The c o n c e n t r a t i o n  of the 
s t r e s s e s  a long the u p p e r  and l o w e r  b a s e s  is  i d e n t i c a l ,  and,  a t  0 _< r -< 0 .5 -0 .6 ,  is  equa l  to ~zz  = 1.10 ~= 
0.025.  
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It is of interest to note that, during the period of not-fully established motion (Figs. 9, I0, ii), the 
effects of the stress concentration in the middle part of the upper and lower bases of the cylinder is less 
(r = 1.05 • 0.025) than after the establishment of a quasi-steady state (Fig. 12). This difference, however, 
is not great, and lies within the limits 0.05 • 0.025o 
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