DIFFRACTION CF AN ELASTIC WAVE IN A DISC

A. M. Skobeev* ’ UDC 534.222:539.3

A numerical solution is constructed for the axisymmetric problem of the diffraction of a
plane longitudinal wave in a rigid disc (cylinder) of finite thickness. The disc is enclosed in
an unbounded elastic medium; at the contact surface, the tangential stresses are limited by
some constant. The incident wave moves along the axis of the cylinder and has the form of

a semiinfinite washed-out step. At the same time, a solution is obtained to the correspond-
ing static problem. A study was made of the dependence of the rate of motion of the cylinder
and the stress field on the parameters of the problem. In particular, it is shown that the
contact conditions have a considerable effect on the stress field only near the lateral surface.
The results obtained can be useful for evaluating the errors in measurement of the stresses
and velocities in an elastic medium, and possibly also in certain other cases.

1. Within the framework of the dynamic theory of elasticity, this paper considers the axisymmetric
problem of the interaction between a longitudinal wave and a rigid cylinder of finite dimensions. The cyl-
indrical coordinates z and r are used; the z axis coincides with the axis of the cylinder, which occupies the
region ~H/2 =z <= H/2, r =1 (Fig. 1). The region outside of the cylinder is filled by an elastic medium.
The measurement units were chosen so that the radius of the cylinder, the density of the medium, and the
rate of propagation of longitudinal waves in the medium were equal to unity.

In what follows, the following basic designations will be used: p is the density of the cylinder; u is
the shear modulus of the medium; t is the time; uf(t, r, z) and w(t, r, z) are displacements along r and z;
v(t) is the velocity; wy(t) is the displacement of the cylinder; oy, T = opy are the components of the stress
tensor, connected with the displacements by Hooke's law

Sz = u’z+(1_2“) (u’r‘jf‘u/r)y T:M(uz'll’wr) (11) (1.1)

In addition, the following auxiliary designations are introduced: T is the contour of the cylinder in
the coordinates v, z; @ and @, are the displacements of the cylinder along the normal and the tangent to I';
Q1 =0, Q,=w, at the lateral surface; Q; =w,, Q, = 0 at the bases; gy and g, are the displacements in the medium at
the boundary with the cylinder, q; alonganormal to T, g, along the tangent; a dot denotes a partial deriva~-
tive with respect to t.

Qutside of the cylinder, the dynamic equations of the theory of elasticity are satisfied for u and w

ull=“uzz+urr+(1'"p‘)wrz’f‘uz/r_u/rz (1.2)
Wy = Wy + PWop &+ Py /7 + (L —p) (U + 2,/ 7)

The equation of motion of the cylinder is

pg—ﬁ;ﬂ_;’— =§rc“dr+tdz (1.3)
r

Equations (1.2) and (1.3) represent a boundary-value problem with initial conditions at t = 0 and bound-
ary conditions at T".
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z The initial conditions describe a plane longitudinal wave, falling from

% infinity on the upper base of the cylinder. Ahead of the leading front of the
wave, the medium is quiescent and not loaded; behind the front, there is a
4 monoaxial deformation with ¢,, =1. These conditions have the form
we(0) =0, v(0) =0, u(0,7,2) =u,;(0,r,2) =0 1.4)
w,(0,7,2) =w, (0, r,2) =f(H+T—22)/7)
4 7 7 Z
Here

4 FE =0 at E>4, (D=1 2t <1, f()) =1+ Esignf)/2—F

: r at —1<i<t @.5)
~ The parameter T, entering into (1.4), characterizes the degree of wash-

(A Iy ing-out of the wave. '

Fig. 1 At the surface of the cylinder, there are two boundary conditions. The
first condition arises from the assumption that the cylinder is rigid. It has
the formq; = @ at T'.

The second cohdition corresponds to a simplified law of dry friction

Ga=0p ctaa |T|<k
T=rksign(g;— @), if [v|=Fk 1.6)

These conditions differ from Coulomb's law in that the quantity k introduced into (1.6) characterizing
the adhesion of the medium to the surface, does not depend on the normal stress.

It must be noted that, if k = 0, from (1.6}, it follows that 7 = 0, which corresponds to slippage condi-
tions. At sufficiently large values of k, g, = Q,, which corresponds to adhesion conditions. In these impor-
tant partial cases, the problem becomes linear.

The problem formulated arises naturally with the study of the effect of shock loading on a body con-
taining a rigid cylindrical inclusion. It is clear that, depending on the situation, different data with respect
to the phenomenon may be necessary; it is therefore, expedient o fix the physical interpretation of the
problem.

In what follows, it will be assumed that the cylinder is a stress pickup, enclosed in an unbounded
elastic medium. The sensing element occupies a certain part of the upper base of the cylinder and does
not affect the stress field. It is assumed that the measured stress lies between the maximal and minimal
normal stresses acting on the sensing element. The object of the measurement is, obviously to obtain in-
formation on the stress in the wave; the main interest lies in the difference between the measured stress
and the stress in the incident wave. Therefore, in what follows, the principal emphasis will be on a study
of the effect of the parameters of the process on the distribution of the normal stresses at the upper base
of the cylinder:

2. The formulated problem was solved numerically. The equations of motion and the boundary con-
ditions were replaced by finite-difference relationships, and the system of equations obtained was solved
on a BESM-3SM digital computer. It is clear that, under these circumstances, a solution may be obtained
only in a finite region. A perturbation, brought about by the motion of the cylinder, for finite values of ¢,
is propagated to a finite region, outside of which the solution has the form

u=0, w=f{t—z-+ HI?2) _ (2.1)

It appears natural to calculate the solution in this region; however, the technical characteristics of
the machine did not permit using this method. Therefore, additional boundary conditions were introduced
withz=+z;and 0 s = R, r =R and—z =z =z),simulating conditions at infinity. It was assumed that,
at the boundary introduced, the perturbed motion is close to one~dimensional. The boundary introduced is
designated I'; (Fig. 1). For the normal and tangential displacements of the perturbed motion toward the
new boundary, the previous designations g; and g4 are used; the normal to the boundary is denoted by {. If
we define Cy =1, Cy = V[, then, at Ty, the one-dimensional equations of the theory of elasticity will be
satisfied -

Jatt == C:qall, Q= 1-,2 (2-2)
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In (2.2), there is no summation with respect to «; the subscript / denotes the derivative along the
normal to I'y and ¢y = w=f({t—z+H/2), g, = u at the upper and lower sections; q; = U, g, = w=f{t~z+ H/2)
at the lateral section.

The general solution of any of Egs. (2.2) consists of the sum of two arbitrary functions, one of which
describes a wave going away toward infinity, and the other a wave coming from infinity. Since the per-
turbed motion contains only waves of the first type, the boundary conditions must intersect waves of the
second type. Such boundary conditions are the following analog of the Sommerfeld principle of radiation:

Qat + Cofuy=0 ar T, (@=1,2) (2.3)

At p =0, Eq. (1.3) degenerates; therefore, using (1.1) and (1.2), we transform it to the form

H d*wo

Pv“fvﬁ +Sgwttrd7‘ dz ‘——“—S rwgdr + prw, dz (1 + w) (L 4/ 2) (us — uy) (2.4)

Dy Ty

Here, h is a constant; I'y is a contour, made up of the straight lines

—HAWI2<<H+W/2, r=1+h/2
t=F(HAR/2 0<r<i+h/2

where Dy is the region included between T and I‘g, ug and uy are the values of u at the upper and lower
corners of I'y.

In a cylindrical system of coordinates, there arise conditions at r = 0 which, from considerations of
symmetry, are taken in the form

u=20, w, =0

The initial conditions were set not at t =0, but at t = H/2—z;, < 0. This comes down to a situation in
“which the sought functions and their derivatives are equal to zero at t = H/2—z; and z = z,;.

Thus, the system of equations (1.2) is solved with the boundary conditions (1.6), (2.3), (2.4) and null
initial conditions.

As is usual, the region included between I' and T'y is divided by straight lines parallel to the coordi-
nate axes info squares with the side h. All the functions are calculated only at the nodes of the grid ob-
tained, and for discrete values of the time. It is assumed that I" and I'; pass through nodes of the grld
This means that 1/h, H/h, z,/h, and R/h are all whole numbers.

The solution is calculated for successive values of t, with the spacing t;, starting from t = H/2—z; +1t;.

In what follows, the arguments of the functions are not calculated; the solution for the moment of time
t is called the middle solution, for t —ty, it is called the lower solution, and for t+ %y, it is called the solu-
tion for the upper layer. To obtain an approximation of the derivatives at the external points of the region
in the middle layer, the central difference operators 5, 6,,, and 0 . are introduced using the formulas

8, i = iss — Fuim) 1 2k 80815 = iy — s 5 + Frjma [ 12 Oufis = (Fins, w1 + fimts i1 — Fi, o1 — fima, ; / 402 (2.5)

Here, f(r, z) is an arbitrary function of r and z. Analogously, the operators 6y, 6y, 87, 077, O, and
8¢t are introduced, except that in the expressions for the two last operators, t; is used instead of h. Thus,
for the corresponding derivatives, the operators introduced yield an approximation of the second order.

Since Egs. (1.2} are determined only at external points of the region, for them we can immediately
write the difference analogies

Buth = P81 + Ot A+ (1 — ) Bpw + Sp1t | (i) — u | (Ri)? 2.6)
Spw = by + Pbpw + nbw / (hi) + (1 — ) 8rou + (1 — ) S.u / (Ai)

The expressions obtained describe a three~layer explicit scheme of the second order of accuracy for
the system of equations (1.2). For the scheme to be stable, the Courant criterion must be satisfied [1];
therefore, in what follows, it is assumed that t; = h/2. ‘

The initial conditions for the system of equations (2.6) reduce to the fact that all the functions are
equal to zero at t = H/2~zy—t; and t = H/2— z,.
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» The boundary conditions are of a more complex character.
Pl S For the conditions at the external boundary, we can use the cen-
08 77 - tral difference relationships introduced into (2.5). The differ-
ence analogy of conditions (2.3) has the form (no summation with
04 respect «; [ is the normal to I'y)

Oy + Cuige =0 sa '} (2=1,2) 2.7)

Since central difference relationships are used in (2.7), a2
point lying outside the region enters into (2.7). To exclude this
point, we make use of the fact that, at the boundary, q, also
satisfies Eqs. (2.2). The difference approximation of these equa~
tions 8y4q4 = C%01/q,, contains the same point, lying outside of
the region under consideration, as in (2.7). This permits ex-
cluding this point and obtaining an approximation of the boundary
conditions in the form (g, is taken in the middle layer)

Fig. 2

2.5
ZCa. (51(]1 ’Jr Caalq‘z) / h + 6tha - Cazélﬂa =0 (2-8)

Boundary condition (2.4) was also approximated by central
difference relationships. The integral entering into the left-hand
part is of the order h and can be transformed to the form

7 J t

- b dw, b €
;Sw”rdrdz =5 iR+ wedsrom 2.9)
1 PS

Fig. 3

Here, I'y is the segment r =1, ~H/2 < z < H/2.

The integrals with respect to I'y and T'; were calculated using the trapezoid rule, while the functions
under the integral signs were taken at the points of intersection between I'y and T'3, and the straight lines
of the grid. The symbol I is used for the corresponding integral sums. Since I'; does not pass through
nodes of the grid, for an approximation of the first derivatives, the operators 61Z/2 and 6;2, analogous to
those introduced into (2.5) were used, but with a spacing of h/2.

The difference analog of (2.4) has the form

> h . h w( A+ b+ H[2—ut, 1+ b, —h—H/[2
M by = Dr (B + pdiw) + 4 2 8aw + (1—p)(1+-2—) tithht HI2—ul D 1o
T: I ' .

(2.10)

Here, 6yw was calculated in the lower layer. In the derivation of (2.10) use was made of the fact
that ugz and uy and the left-hand part of {2.9), have an order of magnitude h; thus, for them, an approxima~
tion of the first order is suitable.

For the remaining boundary conditions, there are required unilateral operators of the second order,
determined in the second layer

8/ f =G +h)—Ff+20)—3/() /2 (2.11)
and the analogous operators 513, 5l1, and éti; only in the last operator is t; used instead of h.
At r = 0, the condition has the form
u=0,8w=0

The condition at the boundary of the cylinder q; = @ remains unchanged, while condition {1.6) assumes
the form (/ is the normal to T; ky = k/u)

(g, — Q) =0, if [80g, | <y (2.12)
0'gs = kysigndit (ga— Qu), - if |8l =1

The conditions obtained constitute a system of nonlinear equations for determining g, at T. Each of
the equations contains only one unknown; therefore, this system is easily solved. The solution is unique
and has the form
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’ 7 Go = —Y1, i |tk (2.13)

/ Go— Yo — hasign @y + )y i (i F ¥ | >k,
08 / Here ‘

/// - ky = 2Rk, | p, y; = 2h8 (ge — Q) /3 — qu yo = 208/'¢, /3 + ¢,

%// ‘ yi and y, do not confain q, at T'.

2.4

Thus, the solution in the upper layer is completely determined.
Moving from layer to layer, we can construct a solution for any given
< ¢ 4 values of t.

3. The above scheme was put into practice in the form of a pro=
gram with only slight changes. The calculation was carried out until
steady-state conditions had been attained and took from 20 fo 60 min;
&y, 7 / H was varied from 0.5 to 2.0, y from 0.1 to 0.5, k from 0 to 1.0, p from
0 4‘2//,» 0.5 to 4.0, T from 0.5 to 1.0, z; from 2.5 to 5.0, R from 3.0 to 6.0, h
" R4 from 0.1 to 0.2. Thus, only the case of large values of H remained

uninvestigated. This gap is explained by the fact that, with a fixed
spacing with respect to h and r, for large values of H, too many points

of the grid are required.

24

Fig. 5

28
9z |2

!

ble characteristic of the process is the velocity of the cylinder v({t),
which is practically independent of i and k, and depends only weakly
on p and H. The solid line on Fig. 2 shows the dependence of v ont
for p=01,k=0, H=2.0,p=1.0, T=0.25,h = 0.2, 75 = 2.5, R = 8.0.
The dotted line corresponds to y = 0.5, k = 1.0, the dash~dot line to y = 0.5, k = 0, while the remaining
parameters are the same. Calculations were carried out for intermediate cases (u = 0.2, 0.3, 0.4, and

k = 0); the difference obtained was still less. Analogous results were also obtained for H = 0.5, 0.8, 1.0,
and 1.6. Since in the theory of elasticity u =< 0.5 [2], and at k = 1.0, no slippage was observed, it may be
assumed that for H = 2.0 and p = 1.0, the velocity of motion of the cylinder is practically independent of
and k.

//J As a result of the calculations it became clear that the most sta~
~’!
17

w7
Fig. 6

Figures 3 and 4 show the dependence of v(t) on H and p. On Fig. 3, curves 1 and 2 correspond to H =
0.5,1.0 and p = 0.3, p =1.0,k =0, T = 0.5; on Fig. 4, curves 1, 2, 3, 4 correspond fo p = 0.5, 1.0, 2.0, 4.0
and H=1.0, 4 =0.3,k=0, T=0.5.

It can be seen that the dependence of the velocity on H and p is brought out clearly and that it corre-~
sponds to intuitive concepts.

The dependence of the stress field on the parameters of the problem comes out even more clearly.
The essential point in the problem is the value of ¢, at the surface of the cylinder. Figure 5 illustrates
the value of g4, (t1, r, H/2); t; is chosen so that steady-state conditions have set in. Curve 1 on this figure
shows ¢, as a function of r for H = 0.5; curve 2 for H = 1.0; curve 3 for H = 2.0; the other parameters are

p=03 0=10,k=0
On Fig. 6, curve 1 shows ¢,, for u = 0.1; curve 2 for p = 0.5; the other parameters are
H=20,p=1.0,k=0

As an important special circumstance, it must be noted that ¢, at the base of the cylinder is prac-
tically independent of k, while, at the same time, ¢, depends strongly on k at the lateral surface. The
dependence of o, at the center of the upper base of the cylinder on k for 4 = 0.1, 0.2, 0.3, 0.4, 0.5 and
H = 2.0, t = «, is shown on Table 1.

Figure 7 shows the dependence of o,, on z at the lateral surface of the cylinder for k = 0.1, 0.3 and
H=2.0,4=0.3.

The dependence of gzz at the center of the upper base of the cylinder on y and H for k = 0.0, p = 1.0,
t = e, is shown on Table 2.
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TABLE 1 TABLE 2

- ®

k H
040 § 0.20 ‘ 0.30 | 0.40 | 0.50 0.0 | 020 | 030 [ 040 | 0.50
0.0 | 4.4411.2711.36 [1.44|1.51 0.5 {1.0311.08 | 1.10|1.12 | 1.14
1.0 | 4,44 [ 1.25 | 1.34 ] 1.42 | 1.48 0.8 /1.03]1.09|1.143(1.16|1.22
1.0 | 1.05 | 1.09 1 115 11.21 | 1.25
1.6 {1.40{1.2011.2911.35 | 1.41
2.0 | 1.1471.27 1436 14.4411.54

ozz
] 1 ANl

A - YRS
08 =1 622 /.,——~-—~-—~.£:.{._.!_M.
1
23 .
17

a4 . : —
= a7
N

a2 o8 7 7 ¢
7

Fig. 7 Fig. 8

Figure 8 gives the dependence ¢, (t) at the center of the upper base of the cylinder for = 0.1, 0.5
and H =2.0, p =1.0, T = 0.25.

Figures 9-12 give the distributions of the stress o,,(r, z, t) for moments of time t=1.0,1.5, 2.0,
5.0 and the following combination of parameters

w=03, k=10, p = 1.0,
H=10,T =05

These figures were obtained with the aid of a special program in which the read-out of an ATsPU-
128 computer was used. The coordinate z is plotted along the axis of ordinates, and r along the axis of ab-
scissas. The contour of the cylinder is indicated by the dashed line; the figures show only the region |z| =
(H/2 +2)/2, 0.5 < r < 1.5, although the whole region |z| = 7, 0 = r < R was developed in the computer.
The numbers1,2,3, . ..denote zones of low values, and the letters high values of the stresses, compared to
the stresses in the incident wave. The white fields, with the exception of the white field in front of the
symbol 9 ahead of the front of the incident wave in Fig. 9, correspond to the stress in the incident wave. A
transition to the following symbol corresponds to a change in o,, by 0.05. In particular, the absence of a
footnote denotes ¢, = 1.0+ 0.025, the symbol 1 denotes ¢, = 0,95 % 0.025, and the symbol A denotes oyz =
1.05 £ 0.025. In Fig. 9, the leading boundary of the wave front is located at the level of the lower base of
the cylinder. In the central part of the upper base, the stress is ¢,, =1.10+ 0.025, which, at r > 0.5, rises
with approach to an angular point. Below the lower base, in the central part of the stress is ¢,, = 0.90 %
0.025. 1In the vicinity of an angular point, zones of stress concentration appear clearly (the symbol A).
Along the lateral surface of the cylinder, the unstable character of the stress distribution is clearly marked.
On the whole, the stresses here rise from the edges toward the lateral surface, where gzz = 0.95 £ 0.025.

On Fig. 10, the stress distribution along the lateral surface becomes more symmetrical; however,
the character of the distribution of the stresses, i.e., their increase from the edge toward the center, is
retained. In the vicinity of angular points, above the upper and below the lower bases of the cylinder, there
is an appreciable growth of the stress concentration. The stresses in the central part of the lower base
rise (azz =0.95+ 0.025).

In Fig. 11, the stress distribution immediately along the lateral surface is close to steady-state con-
ditions. Above the upper and below the lower bases, there is an increase in the zones of stress concentra-
tion.

Figure 12 corresponds to fully established quasi-steady-state conditions. The concentration of the
stresses along the upper and lower bases is identical, and, at 0 < r < 0.5-0.6, is equal to Tyy =1.10 +
0.025.
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Fig. 11



It is of interest to note that, during the period of not-fully established motion (Figs. 9, 10, 11), the
effects of the stress concentration in the middle part of the upper and lower bases of the cylinder is less
(gzz 1.05 + 0.025) than after the establishment of a quasi-steady state (Fig.12). This difference, however,
is not great, and lies within the limits 0.05+ 0.025.
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